tidak gampang memberikan definisi bagi matematika. matematika merupakan ilmu yang terus berkembang. setiap masa akan ada ilmu baru cabang dari matematika. oleh karena itu, matematika sulit untuk didefinisikan. beberapa pemahaman tentang matematika:
MATEMATIKA SEBAGAI BAHASA
Di manakah letak konsep-konsep matematika, misalnya letak bilangan 1? Banyak para pakar matematika, misalnya para pakar Teori Model (lihat model matematika) yang juga mendalami filsafat di balik konsep-konsep matematika bersepakat bahwa semua konsep-konsep matematika secara universal terdapat di dalam pikiran setiap manusia. Jadi, yang dipelajari di dalam matematika adalah berbagai lambang dan ungkapan untuk mengomunikasikannya. Misalnya orang Jawa secara lisan memberi lambang bilangan 3 dengan mengatakan Telu sedangkan dalam bahasa Indonesia, bilangan tersebut dilambangkan melalui ucapan Tiga. Inilah sebabnya, banyak pakar mengkelompokkan matematika ke dalam kelompok bahasa, atau lebih umum lagi dalam kelompok (alat) komunikasi, bukan ilmu pengetahuan.
Dalam pandangan formalis, matematika adalah penelaahan struktur abstrak yang didefinisikan secara aksiomatis dengan menggunakan logika simbolik dan notasi matematika; ada pula pandangan lain, misalnya yang dibahas dalam filsafat matematika.
Struktur spesifik yang diselidiki oleh matematikawan sering kali berasal dari ilmu pengetahuan alam, dan sangat umum di fisika, tetapi matematikawan juga mendefinisikan dan menyelidiki struktur internal dalam matematika itu sendiri, misalnya, untuk menggeneralisasikan teori bagi beberapa sub-bidang, atau alat bantu untuk perhitungan biasa. Akhirnya, banyak matematikawan belajar bidang yang dilakukan mereka untuk sebab estetis saja, melihat ilmu pasti sebagai bentuk seni daripada sebagai ilmu praktis atau terapan.
Matematika tingkat lanjut digunakan sebagai alat untuk mempelajari berbagai gejala fisika yang kompleks, khususnya berbagai gejala alam yang teramati, agar pola struktur, perubahan, ruang dan sifat-sifat gejala bisa didekati atau dinyatakan dalam sebuah bentuk perumusan yang sistematis dan penuh dengan berbagai perjanjian, lambang, dan notasi. Hasil perumusan yang menggambarkan perilaku atau proses gejala fisika tersebut biasa disebut model matematika dari gejala.
MATEMATIKA SEBAGAI RAJA DAN PELAYAN ILMU LAIN
Ada pendapat terkenal yang memandang matematika sebagai pelayan dan sekaligus raja dari ilmu-ilmu lain. Sebagai pelayan, matematika adalah ilmu yang mendasari dan melayani berbagai ilmu pengetahuan lain. Sejak masa sebelum masehi, misalnya zaman Mesir kuno, cabang tertua dan termudah dari matematika (aritmetika) sudah digunakan untuk membuat piramida, digunakan untuk menentukan waktu turun hujan, dan sebagainya.
Sebagai raja, perkembangan matematika tak tergantung pada ilmu-ilmu lain. Banyak cabang matematika yang dulu biasa disebut matematika murni, dikembangkan oleh beberapa matematikawan yang mencintai dan belajar matematika hanya sebagai kegemaran tanpa memedulikan fungsi dan manfaatnya untuk ilmu-ilmu lain. Dengan perkembangan teknologi, banyak cabang-cabang matematika murni yang ternyata di kemudian hari bisa diterapkan dalam berbagai ilmu pengetahuan dan teknologi mutakhir.
MATEMATIKA SEBAGAI ILMU PENGETAHUAN
Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".[21] Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan. Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]
Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper.[22] Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."[23] Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.
Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya fisika teoretis) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya.[24] Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya). Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.
Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika. Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.
Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan),[25][26] dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan. Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan. Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan. Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Hadiah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu (hipotesis Riemann) yang mengalami penggandaan di dalam masalah-masalah Hilbert.
sumber: http://id.wikipedia.org/wiki/Matematika#Etimologi
29 Mei, 2009
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar
terima kasih untuk anda yang berkomentar tentang blog ini